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Abstract— Electromyography-based gesture classification
methods for control of advanced upper limb prostheses
are limited either to individuals with amputations distal to
the elbow or to those willing to undergo targeted muscle
reinnervation surgery. Based on the natural similarity between
gestures of the lower leg and the arm and on established
methods in electromyography-based gesture classification, we
propose a noninvasive system with which users control an
upper limb prosthesis via homologous movements of the leg
and foot. Eight inexperienced able-bodied subjects controlled
a simulated robotic arm in a target achievement control (TAC)
task with command of up to four degrees of freedom toward
targets requiring one motion class. All subjects performed the
task with analogous electromyography recording configurations
on both the leg and the arm (as a benchmark), achieving
slightly better performance with leg control overall. Only
a brief demonstration of the arm-leg gesture mapping was
necessary for subjects to perform the task, establishing the
minimal training time required to begin using the control
scheme. Our findings indicate that electromyography-based
recognition of leg gestures may be a viable noninvasive
prosthesis control option for high-level amputees.

I. INTRODUCTION

A fundamental problem in myoelectric upper limb pros-
thesis control is the lack of muscle sites available for
determination of the user’s movement intentions. In some
cases, as in shoulder disarticulation, there are no residual
arm muscles remaining at all. The gap between function-
ality of prostheses available to individuals with low-level
and high-level amputations is widening with the emergence
and advancement of electromyography (EMG)-based gesture
recognition techniques for prosthesis control [1], which is
reliant on recording EMG from a collection of residual
muscles. Prosthesis rejection and abandonment rates are
highest among high-level amputees [2], even though this
group would seemingly benefit the most from reliable control
of a highly functional prosthetic arm.

The only existing technique offering intuitive upper limb
prosthesis control for high-level amputees is targeted muscle
reinnervation (TMR), a surgical procedure in which efferent
nerves from the residual limb are relocated to other muscles,
such as the pectoralis muscles in the chest. With some
recovery and training (approximately a year), prosthesis
control can be achieved using EMG-based gesture recogni-
tion techniques commonly used for low-level amputees [3].
Despite its advantages, TMR is an invasive procedure which
some amputees may not be willing to undergo [4].
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Another control scheme for high-level amputees, devel-
oped for the DEKA arm, uses foot-mounted inertial measure-
ment unit (IMU) sensors to detect movements about the ankle
which map to various prosthesis functions. This technique is
noninvasive, but only a few movements are recognized by
the IMU sensors, so both feet are used to control a single
arm. This results in a non-straightforward mapping from leg
movements to prosthesis action, and intensive training (∼ 20
hours) is needed. Despite this, many amputees trained in the
use of this control scheme responded positively and found
the interference with walking acceptable [5]. Other types of
foot controllers have been proposed sparsely over the last
several decades [6]–[8], but none have offered capabilities
comparable to TMR or the IMU-based foot controller.

In this study, inexperienced able-bodied subjects used
leg gestures, recognized by current standard techniques in
surface EMG-based gesture recognition [1], to control a sim-
ulated robotic arm in real time. They also performed the task
using an analogous recording configuration on the arm for
comparison. The target achievement control (TAC) test [9]
was used to evaluate real-time performance in controlling the
arm with three and four active degrees of freedom (DOF) to
1-DOF targets. The results suggest that upper limb prosthesis
control via EMG-based recognition of leg gestures may be a
viable noninvasive option for high-level amputees, requiring
little user training.

II. METHODS

A. Mapping Between the Arm and Leg

The idea of controlling an upper limb prosthesis with
movements of the lower leg is based on the natural mapping
between the degrees of freedom of the two limbs, shown in
Fig. 1. All degrees of freedom are in alignment assuming
a posture in which the foot is flat on the ground and
the arm is held out with the palm facing down and the
shoulder abducted. One modification of the strict mapping
is that foot adduction/abduction can represent elbow flex-
ion/extension instead of radial/ulnar deviation, as control of
the elbow is more important for high-level amputees. In
this study, the elbow of the simulated arm was controlled
with radial/ulnar deviation in the arm configuration and foot
adduction/abduction in the leg configuration.

Although high-level amputees would not be able to use
arm muscles for gesture classification, we tested able-bodied
subjects in order to record EMG from an analogous set of
muscles of the arm and leg (Table I). Each muscle pair has a
similar primary action on the corresponding limb to keep the
two different configurations as comparable as possible. The



Fig. 1: Alignment of the degrees of freedom of the arm and
leg. Foot adduction/abduction can map to either radial/ulnar
deviation or elbow flexion/extension.

TABLE I: Muscles Used for Gesture Recognition

Muscle Primary Action

Arm

A extensor carpi radialis longus wrist extension
B pronator teres forearm pronation
C flexor carpi radialis wrist flexion
D extensor pollicis longus thumb extension
E extensor digitorum finger extension
F flexor digitorum superficialis finger flexion

Leg

A tibialis anterior dorsiflexion
B peroneus longus foot eversion
C gastrocnemius lateralis plantarflexion
D extensor hallucis longus hallux extension
E extensor digitorum longus lesser toe extension
F flexor digitorum longus lesser toe flexion

leg muscle sites chosen were verified to produce sufficient
offline classification accuracy of the movements in Fig. 1 in
a previous study [10].

B. Experiment Setup

Eight able-bodied subjects with no myoelectric control
experience participated in the study: five male, six right hand
dominant (interface was reversed for left-handed subjects),
ages 20–23. All subjects were informed of and consented
to procedures approved by the Institutional Review Board at
UC Davis (protocol #251192).

Twelve disposable Ag/AgCl center snap electrodes (Con-
Med 1620) were placed in bipolar pairs on muscles listed
in Table I with approximately 2.5 cm spacing and were
connected to Motion Labs Systems Y03 differential ampli-
fiers (×300 gain, 100 dB bandwidth from 15 Hz to 2 kHz).
The amplifiers were powered by a custom power supply
board and connected to a Measurement Computing USB-
1608G data acquisition unit (16-bit). Signals were sampled
at 5120 Hz in 50-sample segments, bandpass filtered with
a fourth order digital Butterworth filter between 8 Hz and
512 Hz, then downsampled to 2560 Hz.

Subjects remained seated throughout the session and
removed footwear during the leg control portion. They
performed each gesture four times for three seconds in
randomized order to generate classifier training data. In all
cases, the subjects were prompted with an image of the
corresponding arm gesture. The middle two-second section

Fig. 2: TAC test environment simulated with V-REP. The
subject is being prompted to supinate the forearm.

of each recording was extracted for processing, and these
portions were segmented into 150 ms windows with 100 ms
overlap. The popular time domain feature set was extracted
from each window (mean absolute value, waveform length,
slope sign changes, and zero crossings) [11], and linear
discriminant analysis (LDA) was used to classify gestures
throughout the study.

C. Real-Time Control

The target achievement control (TAC) test was used to
evaluate real-time control performance [9]. The TAC test
has the advantage of providing realistic visual feedback
for control of an arbitrary number of degrees of freedom,
where cursor-to-target tasks are generally limited to two or
three degrees of freedom. The arm (ABB IRB140) and hand
(BarrettHand) were simulated in V-REP [12], as shown in
Fig. 2. At the beginning of each trial, a translucent “reference
arm” moved into the target posture, then an indicator changed
color to prompt the user to begin moving the controlled
arm to the target. Segments of the arm corresponding to the
controlled joints (elbow, forearm, wrist, and hand) changed
from grey to green if the joint moved to a position within the
tolerance of the target joint angle. Once the controlled arm
remained within ±10◦ tolerance of the target angle (60◦) for
all joints for a dwell period of 2 s, or if the target could not
be achieved within 15 s, the trial ended. Joint limits were
set to 10◦ beyond the target (plus tolerance) to allow for
overshoot. A decision-based velocity ramp controller with
a ramp length of 10 (500 ms) was used to help attenuate
undesired movements due to misclassifications [13]. The top
10 mean absolute value features for each class from the
training data were averaged to obtain the boost values for
the controller such that the maximum output velocity for a
given joint would be 100◦/s.

Half of the subjects started the session in the arm con-
figuration and the other half started in the leg configuration.
Both configurations were tested in a single session. Subjects
were given approximately 10 minutes of guided practice
controlling the simulated prosthetic arm before starting the
first recorded cycle in order to become familiar with the
nature of pattern recognition control and the simulation



environment. In each limb configuration, subjects performed
two different TAC test tasks. In the first condition, six
motion classes were used to train the classifier (3-DOF
active) and every possible target was repeated four times
in randomized order (24 trials). The active DOFs included
forearm pronation/supination, wrist extension/flexion, and
open hand/closed fist. In the second condition, elbow flexion
and extension were added to the classifier (4-DOF active)
and every possible target was repeated 3 times (24 trials). In
both cases, the target posture involved a single movement (1-
DOF target), though erroneous activation of other degrees of
freedom and overshoot required correction. The distinction
between these two conditions is especially important for
the leg configuration, as we have found that classification
accuracy can be heavily affected by the inclusion of the foot
adduction and abduction gestures.

D. Analysis

Classification accuracy was obtained by leave-one-out
cross validation with whole recording trials as the unit of
train/test splitting (data from a single recording was never
split into training and testing sets). TAC test performance
metrics include completion rate, completion time, and path
efficiency [9]. Completion rate is the percentage of trials
successfully completed before the trial timeout (15 s). Com-
pletion time is the amount of time from movement initiation
to the moment the target is entered for the last time on a
successful trial. Path efficiency is the straight-line distance
to the final arm position divided by the cumulative distance
travelled by the arm to get to the target, measured in joint
angle space (100% efficiency is achievable with 1-DOF
targets). An ANOVA was performed for each performance
metric with subject as a random factor and number of active
DOFs (3 or 4) and limb (arm or leg) as fixed factors. The
significance threshold was set at α = 0.05. Significant factors
prompted follow-up paired t-tests repeated for each level of
the factor.

III. RESULTS

A. Classification Accuracy

A summary of the results is given in Fig. 3. Average clas-
sification accuracy was generally higher than 90%, except
in the leg configuration with 4-DOF active. An ANOVA
showed that number of active DOFs was a significant factor
(p = 0.003), and post-hoc t-tests indicated a significant
decrease from 3-DOF to 4-DOF for both the arm and the
leg configurations (p = 0.017 and p = 0.012 respectively).
Although limb was only a marginally significant factor (p =
0.050), there does seem to have been a systematic drop in
classification accuracy in the leg configuration, especially in
the 4-DOF case.

B. Real-Time Performance

Completion rate similarly decreased in the 4-DOF active
case for both limb configurations (p = 0.005 for arm,
p = 0.023 for leg). ANOVA failed to show limb to be
a significant factor (p = 0.155), though completion rates
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Fig. 3: Summary of results averaged across participants.
Error bars indicate standard error of the mean. Results from
comparable studies are also shown: AB (inexperienced able-
bodied subjects with sensors on the arm, 3-DOF active [13],
[14]), AMP (experienced amputees with sensors on the
residual limb, 3-DOF active [9]), TMR (experienced TMR
subjects, 4-DOF active [15]).

in the leg configuration were slightly higher overall. Path
efficiency was somewhat low (compared to similar studies)
across all cases except in the leg configuration with 3-
DOF active. This interaction between limb and number of
active DOFs was significant (p = 0.037). No significant
differences were found for completion time. Fig. 4 shows the
completion rate calculated at artificial trial cutoff times. In
the leg configuration with 3-DOF active, there was a notably
rapid increase in completion rate over the first four seconds.
Otherwise, cumulative completion rate curves were similar
across all conditions.

IV. DISCUSSION

Most studies using the TAC test to measure performance
of prosthesis control schemes use a task with 3-DOF active
and 1-DOF targets, with a few including multi-DOF tar-
gets [16], [17] and only one including four active DOF [15].
It is somewhat difficult to directly compare results between
studies because of differences in subject type (able-bodied,
amputees, TMR patients), levels of experience with myoelec-
tric control, recording setup, and TAC test parameters. We
selected our methods for gesture classification and TAC test
parameters to facilitate comparison with other studies, a few
of which are shown in Fig. 3. Note that we do not expect
arm amputees with intact legs to show significantly different
performance from able-bodied subjects, in contrast to the
drop in performance typically found in myoelectric control
work. However, cortical reorganization following amputation
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Fig. 4: Cumulative completion rates averaged over partici-
pants. Filled areas represent ±1 standard error of the mean.

and the effects of prosthesis use may lead to differences [18].
The main result from this study is that the real-time

performance in the leg configuration is as good as and
sometimes better than in the arm configuration. One of the
concerns we initially had was that performance in the leg
configuration would drop along with classification accuracy
with the foot adduction/abduction gestures included (4-DOF
active). Since this work aims specifically to help high-level
amputees, it is necessary to evaluate performance with elbow
control included, and the 3-DOF and 4-DOF conditions were
used to explicitly test for the effect of the added gesture
classes. While the drop in performance moving to 4-DOF
is not too different from the arm configuration, it is worth
noting that some subjects struggled to actuate the elbow
correctly while others did not. The effect on performance
may have been reduced to some extent by experience with
3-DOF active before moving on to 4-DOF. Regardless, we
have found that feedback is a vital part of effectively using
the foot adduction and abduction gestures for control, at least
for inexperienced subjects.

Subjects tended to be more efficient in the leg config-
uration, and we note anecdotally that several subjects had
some difficulty in the arm configuration with low levels
of muscle activity being classified as forearm supination.
Despite the use of a decision-based velocity ramp controller,
these misclassifications resulted in the need to correct the arm
position with forearm pronation. These corrective motions
had an inflating effect on both the completion time and
path efficiency metrics in the arm configuration. In contrast,
subjects exhibited notably fast and accurate movements with
3-DOF active in the leg configuration.

Overall, our results show promise for myoelectric upper
limb prosthesis control via leg movements. Future work

should address practical issues that may arise from this
approach, such as the effect of standing. So far, this control
scheme compares favorably to the few options currently
available to high-level arm amputees by offering balance
between high functionality and minimal user training.
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