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Abstract— Myoelectric control based on classification of dis-
tinct gestures discretizes the output space available to the user,
which can make it difficult to react appropriately to novel
scenarios such as changing limb position. While proportional
myoelectric control is noisy in comparison to pattern recog-
nition control, this noise may be an important component
of skill acquisition. Here we implemented a two-dimensional
proportional myoelectric controller to investigate the effects of
movement direction and mapping uncertainty on adaptation
to trial-by-trial perturbations. We found that subjects who
practiced hitting targets despite trial-by-trial random mod-
ifications of the control mapping adapted to perturbations
faster than a control group with low mapping variability. Our
findings suggest that exposure to a variable mapping encourages
exploratory behavior and underlies a change in adaption rate,
which could potentially be used to train myoelectric control
users to achieve more robust control.

I. INTRODUCTION

Surface electromyography (EMG) is a non-invasive sensor
modality that can enhance the ability of individuals with dif-
ferent kinds of disabilities to interact with the environment,
such as amputees controlling powered prosthetic limbs or
paralyzed individuals controlling communication interfaces.
Much of the current work on myoelectric control uses gesture
classification to discretize the output and provide intuitive
and low-noise control of a number of commands [1]. Pro-
portional control, in which EMG signal amplitudes directly
influence dynamic parameters of the object under control,
offers control that is more similar to our natural movements,
but at the cost of much noisier output [2]. We seek to
leverage insights from human motor learning and control
to study how users of myoelectric control interfaces learn
to manipulate EMG signals to achieve desired outcomes.
Ultimately, our aim is to design or discover training strategies
that improve control reliability and robustness despite various
nonstationarities inherent in myoelectric control such as the
limb position effect [3], muscle fatigue, and electrode shift.

One concept from motor learning that has recently been
studied with myoelectric control is the notion of an adapta-
tion rate, describing the proportion of an error the subject
corrects for in the subsequent trial or trials. The Bayesian
integration model of visuomotor adaptation is one model of
this behavior, predicting that the amount by which we adjust
our reaching movements after being presented with a pertur-
bation depends on sensory uncertainty as well as the variabil-
ity of past experiences performing reaching movements [4].
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The model predicts that increased sensory uncertainty results
in more reliance on a forward model to form an estimate
of state, such that when a perturbation is suddenly applied,
the blurred feedback is treated as unreliable and the subject
doesn’t adjust to the perturbation. This behavior has been
demonstrated in a planar reaching tasks with step pertur-
bation [5] as well as trial-by-trial random perturbation [6],
where the adaptation rate is defined as the proportion of
the perturbation seen in trial k − 1 corrected for in trial k.
It has also been shown that displaying randomly scattered
feedback in a one-dimensional myoelectric control task leads
to reduced adaptation to trial-by-trial perturbations [7]. The
other main prediction of the Bayesian integration model
is that increased model uncertainty, whether it arises from
motor noise or modeling errors, increases our reliance on
feedback because our forward model predictions are not
trustworthy. This has been demonstrated less robustly than
the effect of sensory uncertainty [8], but there is at least some
evidence that there is an effect through direct or indirect
modifications of model uncertainty [5], [6], [9].

Several questions remain open regarding model uncer-
tainty and the effects on sensorimotor learning. In the case of
myoelectric control specifically, it is unclear if adding addi-
tional uncertainty to an already noisy control interface could
drive a change in adaptive behavior. It is also not known
whether an increased tendency to adapt to perturbations is
useful, as it fundamentally means a forward model is not
well formed or is not trusted. An alternative view is that
uncertainty in the mapping is a mechanism by which one
learns this forward model, which produces better long-term
performance [10], [11]. One example of the intentional ad-
dition of control signal variability driving favorable behavior
comes from Thorp et al., who showed that applying noise to
only a subset of a redundant control system’s inputs results
in subjects avoiding use of those inputs [12]. This kind of
intervention could be used in training procedures to reduce
the reliance on dominant inputs and promote exploration of
less-used input space.

In this study, subjects were exposed to a new form of
mapping uncertainty in which the vertical components of
a linear mapping between EMG signal amplitude and two-
dimensional cursor position was randomized on every trial
during a cursor-to-target familiarization task. A control group
performed the same task, but without the mapping variability.
After familiarization, the mapping was held fixed and sub-
jects made movements to a target without feedback until the
end of the movement, when a perturbed cursor position was
shown briefly. We found that subjects in the mapping noise



group overall adapted faster to the perturbations, as predicted
by the Bayesian integration model. These results suggest
that adaptation rate can be driven by increased mapping
uncertainty, which could be a useful mechanism for getting
a user to explore the input space.

II. METHODS

A. Experiment Setup

Twelve subjects participated in the experiment: 8 female
and 4 male, 10 right hand dominant and 2 left hand dominant,
18 to 26 years old. The subjects were split into two groups
of six: a noise group and a control group. All subjects were
informed of and consented to procedures approved by the
Institutional Review Board at UC Davis (protocol #943281).

Subjects were fitted with six wireless EMG sensors (Del-
sys Trigno system), placed approximately one third of the
forearm length distal to the elbow on the dominant arm,
which would be a reasonable sensor arrangement for a
transradial amputee. The first two electrodes were placed on
either side of the ulna, then the rest of the sensors were
placed approximately equidistantly around the remaining
space. Throughout the session, subjects were seated with the
elbow resting on an arm rest with the arm held parallel to
the floor and pronated so the palm faced downward. Subjects
were instructed to keep the forearm still and move only the
wrist.

In all experimental tasks, subjects viewed a computer
screen with a square cursor interface drawn on it (26.8 cm
wide). The center of the interface was marked with a small
cross and the edges were defined to be one unit away
from the origin in all four directions (normalized coordinate
system). The cursor diameter was 0.04 units and the target
diameter was 0.2 units. For the two left-handed subjects, the
cursor interface was mirrored horizontally for all tasks so
that the same wrist movements could be used by all subjects
in the adaptation task.

The EMG signals were recorded at a sampling rate of
2000 Hz in chunks of 50 ms. These chunks were centered
to have zero mean and then filtered with a fourth-order
Butterworth bandpass filter with cutoff frequencies of 10 Hz
and 450 Hz. Windows of 200 ms were then formed (150 ms
overlap between adjacent windows) and the root mean square
(RMS) of each channel in the window was computed to form
a six-dimensional feature vector representing the magnitude
of activation of each channel.

B. Experimental Tasks

1) Mapping: In the mapping task, the cursor automat-
ically moved from the origin out to a target location and
back while the subject aimed to follow this movement by
moving the wrist. Eight targets, arranged in 45◦ increments
around a circle 0.9 units from the origin, were presented
once each in a block in random order. Seven blocks of
trials were performed. Each trial started by displaying the
cursor in the center and the target. The cursor held the
position at the center for 1 s, moved out to the center of
the target in a sinusoidal velocity profile over 2 s, remained
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Fig. 1. (a) Cursor control mapping from a representative subject. Each
arrow represents a single EMG channel’s effect on the cursor position. For
the noise group, new mappings were formed on each trial by perturbing the
mapping vectors vertically. (b) Wrist movements subjects used to move the
cursor in the four cardinal directions (assuming right hand dominant).

in the target for 4 s, then returned to the origin. Subjects
were instructed to follow the cursor’s position as closely
as possible by actuating the wrist in extension/flexion and
radial/ulnar deviation (Fig. 1b), using a moderate amount of
effort at the target position.

After completing the mapping task, the RMS values in
each channel were scaled to the range [0, 1]. In subsequent
tasks, the scaling factors were applied to the RMS values
computed in real time, and the scaled values were put
through an exponentially weighted moving average filter
with a decay rate of 0.5. The scaled RMS features and
corresponding cursor positions from the mapping task were
fit to a linear model via ordinary least squares regression,
producing a 2 × 6 matrix mapping scaled RMS values to a
two-dimensional cursor position. This is referred to as the
base mapping. An intercept term was not included in the
regression since the inputs were scaled to [0, 1]. Scaling
the features and fitting a model without an intercept enables
applying modifications to the mapping without introducing
bias—i.e. relaxing the arm with low muscular activity always
places the cursor at the origin.

2) Familiarization: In the familiarization task, subjects
used the proportional control scheme to move the cursor
to targets as quickly as possible, with veridical feedback
throughout the trial. Eight targets arranged in a circle were
again presented one at a time, this time at 0.54 units from
the center of the cursor interface (60% of the distance used
in the mapping task). Each target was presented once per
block in random order, and 10 blocks were completed. After
the target was presented, the subject had 10 s to move the
cursor to the target and dwell inside it for 500 ms, otherwise
the trial timed out.

On each trial, the mapping matrix was formed by adding
six samples (one for each channel) from a zero-mean Gaus-
sian distribution to only the y component of each column of
the base mapping, illustrated in Fig. 1. The variance of the
distribution was set either to 0.01% (control group) or 1%
(noise group) of the median magnitude of the columns of the
base mapping matrix. This constituted the only difference
between the control and noise groups. The intended effect
of this mapping update was to change the effect of each
EMG channel in the vertical direction only without directly
affecting the subject’s ability to hold the cursor in a small
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Fig. 2. Illustration of an adaptation trial to the target at 0◦. The cursor
begins at the starting location (center of the screen) then disappears as the
subject moves in the target direction. Once the cursor passes an invisible line
perpendicular to the target direction, its position is perturbed and displayed.

region (as adding random input or output noise would).
While the variance seems low, small changes to the input
in the null space of the mapping matrix (i.e. different inputs
leading to the same cursor position for the base mapping)
can cause large variations in the vertical component of the
cursor position once the mapping is changed.

3) Adaptation: In the adaptation task, only two targets
were used: 0◦ and 90◦ (measured counterclockwise from the
right). The cursor started in the center, then as it moved
beyond 0.1 units from the origin, it disappeared so that
subjects were required to move toward the target without
feedback. Once the cursor passed through an invisible line
perpendicular to the target direction at the target center,
the cursor’s position was perturbed along that line and the
perturbed position was displayed for 1 s before returning to
the center for the next trial. An illustration of a typical trial
is shown in Fig. 2. Perturbations were randomly drawn from
the set {−0.3, 0, 0.3} units. The task proceeded in a block
structure, where each block consisted of two repetitions
of the three perturbations in random order, followed by
a null trial in which the cursor’s final position was not
displayed. Each of the two targets were allocated 10 blocks
in random order, for 140 trials total. Mapping perturbations
were disabled for both groups in the adaptation task, since
these would potentially introduce additional variability in the
feedback.

C. Analysis

1) Path Efficiency: Cursor trajectories from the familiar-
ization task were analyzed to uncover potential differences
between groups as well as the two targets of interest in
the adaptation task. One informative measure of control
capability is path efficiency, defined as the ratio of the
cumulative distance traveled over the course of a trial to
the straight line distance to the final cursor position. It
encapsulates both directness of the cursor trajectory and the
ability to hold the cursor position steady once it reaches the
target position. To analyze path efficiency over the course
of the practice task, we combined blocks (as they were
presented) such that each block contained two repetitions
of each target instead of one.

2) Adaptation Rate: The trial-by-trial adaptation behavior
was viewed through the lens of a Kalman filter [6], which is
a special case of Bayesian integration. The subject’s estimate
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Fig. 3. Path efficiency by block in the familiarization task. Each block
consists of two repetitions of each target. Points represent subject averages
and filled regions represent ± one standard error of the mean.

of the target position on trial k is x̂k|k−1, and this is assumed
to be directly recorded as the cursor position at the end
of the movement (before perturbation is applied). Once the
perturbation is applied and the feedback is received, the
subject updates the estimate by applying the Kalman filter
update:

x̂k|k = x̂k|k−1 +Kkyk (1)

where Kk is the Kalman gain and yk is the innovation,
which is in our case the experimentally applied perturba-
tion (the feedback position minus the true cursor position).
Rearranging (1) and making the simplifying assumption that
the dynamic model is unity, we get a relationship between
the change in true cursor position from one trial to the next
and the perturbation:

δk,k−1 = Kkyk (2)

The adaptation rate is then the coefficient of a linear re-
gression fit to the true cursor position change versus the
perturbation from the previous trial. Higher adaptation rate
indicates a willingness to trust feedback over forward pre-
diction. An adaptation rate was computed for each subject
and each of the two targets (0◦ and 90◦). A mixed effect
analysis of variance (ANOVA) model was then used to test
for differences between groups (random effects factor), target
angle (fixed effects factor), and the interaction between the
two. Significance was determined with α = 0.05.

III. RESULTS

A. Familiarization

Early in the experiment, we noticed that some subjects
seemed to have more difficulty reaching and remaining inside
the 90◦ target. This led to an analysis of the path efficiency
during the familiarization task, which is shown in Fig. 3.
As expected from our observations, the control group’s
path efficiency for the 90◦ target was lower. Furthermore,
the noise group’s motion to the 0◦ target was affected by
the vertical trial-by-trial mapping perturbations introduced,
giving indirect evidence that the magnitude of the mapping
noise was sufficient to drive a change in behavior. Movement
to the correct vertical location for the 90◦ target with a
changing mapping should involve only minor adjustments
to the strength of muscle contraction, whereas correcting
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Fig. 4. Adaptation rates for the two groups and two targets in the adaptation
task. Each subject’s data for the given condition is averaged, then subject
means are combined to form the boxes.

the vertical position out at the 0◦ target could require more
complex manipulations. It appears from Fig. 3 that this is the
only condition in which learning occurred over the course of
the familiarization task.

B. Adaptation

Adaptation rates are shown in Fig. 4. The mixed effect
ANOVA showed that group was a significant factor (P =
0.026), whereas the target angle and the interaction between
group and target angle were not found to be significant (P =
0.626 and P = 0.214, respectively). Surprisingly, adaptation
rates in the noise group tended to be higher for both targets,
rather than only the 0◦ target. It was also unexpected to
find such low adaptation rates in the control group, as
compared to adaptation rates found in similar myoelectric
control experiments with low feedback uncertainty [7].

IV. DISCUSSION

Our main finding is that trial-by-trial changes in a linear,
proportional myoelectric control interface’s mapping during
a familiarization phase led to increased adaptation rate, even
though the mapping was fixed in the adaptation phase. We
attribute this effect to the use of mapping uncertainty as
opposed to adding random or signal-dependent noise to the
cursor position during familiarization. Because the mapping
itself changed from trial to trial, subjects were forced to
produce different EMG activation profiles to achieve the
same target. This caused the internal model of how motor
commands influenced cursor position to be more uncertain
and therefore less trustworthy than the feedback.

The secondary finding that the anisotropic (vertical only)
mapping noise did not affect adaptation to the two target
directions differently is somewhat surprising. In planar reach-
ing experiments, He et al. showed that adaptation rate is
higher for more distant targets because they are associated
with decreased proprioceptive precision, hence subjects are
more uncertain of their feedforward prediction and rely more
on the previous trial’s feedback [9]. In our case, perhaps
the mapping uncertainty equalized control difficulty in both
directions, whereas the control group tended to find the
0◦ target somewhat easier to reach and dwell inside. This
doesn’t, however, explain the lack of difference in adaptation
rate between the two targets for the control group.

One limitation of our study design is that we did not
block the subject’s hand from sight. While the hand position

or wrist angle does not necessarily correlate perfectly with
cursor position, receiving this un-perturbed feedback could
cause the adaptation rate to decrease, potentially explaining
the low adaptation rates observed in the control group
(or overall). Furthermore, the use of eight targets in the
familiarization task likely reduced the effect of the mapping
uncertainty overall. Another limitation is the small number
of subjects (six per group). With relatively high variability
between subjects in myoelectric control tasks, a larger sam-
ple would be appropriate for future work. Finally, a more
thorough investigation of the mapping noise variance would
help to more fully evaluate the Bayesian integration model.

While we have demonstrated the ability to modify adapta-
tion behavior via a simple intervention potentially applicable
to many myoelectric control schemes, the higher-level goal
is to improve the ability of individuals with disabilities to
interact with their environment, which becomes an issue of
skill learning rather than adaptation. However, if mapping un-
certainty is a mechanism through which exploratory behavior
is encouraged, it may be possible to increase the robustness
and reliability of myoelectric control through user training.
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