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Abstract—Recognition of motion intent via surface electromyo-
graphy (EMG) has become increasingly practical for prosthesis
control, but lacking residual muscle sites remains a major
obstacle to its use by high-level amputees. Currently, there are
few approaches to upper limb prosthesis control for individuals
with amputations proximal to the elbow, all of which suffer from
one or more of three primary problems: invasiveness, the need
for intensive training, and lacking functionality. Using surface
EMG sensors placed on the lower leg and a natural mapping
between degrees of freedom of the leg and the arm, we tested
a noninvasive control approach by which high-level amputees
could control prosthetic elbow, wrist, and hand movements with
minimal training. In the current study, we used able-bodied
subjects to facilitate a direct comparison between control using
intact arm and leg muscles. First, we found that foot gestures
could be classified offline using time domain features and linear
discriminant analysis with accuracy comparable to an equivalent
system for recognizing arm movements. Second, we used the
target achievement control (TAC) test to evaluate real-time
control performance in three and four degrees of freedom. After
approximately 20 minutes of training, subjects tended to perform
the task as well with the leg as with intact arm muscles, and
performance overall was comparable to other control methods.

Index Terms—electromyography, myoelectric control, gesture
recognition, prosthesis control

I. INTRODUCTION

UPPER limb loss affects an estimated 41, 000 individ-
uals in the United States [1]. Particularly for those

with amputations proximal to the elbow, the loss of one
or both arms presents severe limitations in the ability to
perform activities of daily living. Unfortunately, these high-
level amputees have the fewest options for prosthesis control.
Traditional body-powered prostheses that transfer motions of
the shoulder through cables to the prosthetic joints have
limited functionality, leading to high rates of rejection and
abandonment [2]. Myoelectric control, where signals gener-
ated by muscle contraction are recorded from the surface of
the skin, is becoming an increasingly practical technique for
controlling advanced robotic arms [3]. Many techniques have
been developed for prosthesis control via electromyography
(EMG), but the typical assumption is that muscles of the
forearm are available, as is the case with transradial or more
distal amputations. High-level amputees, however, have few or
no arm muscle sites at which to record EMG, so they are left
with limited options for powered prosthesis control.
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This work proposes a new noninvasive approach to upper
limb prosthesis control through myoelectric recognition of
ankle and foot movements which map naturally to the elbow,
wrist, and hand. Currently, the only approach offering truly
intuitive myoelectric control of arm movements for individuals
with amputations proximal to the elbow is targeted muscle
reinnervation (TMR), a surgical technique in which nerves
from the amputation site are relocated to other muscles of the
body such as the pectoral muscles of the chest. This technique
allows users to imagine moving the missing limb, producing
muscle activations at the target site (e.g. the chest) that can be
recognized as distinct gestures to control a prosthetic arm [4].
Despite the major advantages of TMR, eligibility for the
surgery may be limited to those whose amputation occurred
within the last 10 years [5], and a recovery time of several
months in addition to extensive rehabilitation and EMG testing
is required before operating a prosthetic arm [6]. While TMR
presents a tremendous opportunity, some amputees who desire
a functional prosthetic arm may not be willing to undergo
surgery and the associated recovery and training time [7].

The idea of controlling an prosthetic arm with the lower
limb has been sparingly studied for several decades. A range of
techniques have been used, including measuring toe movement
with strain gauges [8], measuring toe and foot movements
with resistor strips [9], detecting foot movements with pressure
sensors built into a shoe insole [10], and measuring foot
movements with inertial measurement unit (IMU) sensors [11].
Each of these approaches involves a different mapping from
lower limb movements to upper limb prosthesis function with
different levels of intuitiveness. The IMU-based method of
Resnik et al. [11] is one of the most comprehensive approaches
to upper limb prosthesis control for high-level amputees,
providing control of shoulder, elbow, and wrist movements as
well as simple grasps. This is achieved by combining a number
of techniques to create a complex system which requires
significant training, in addition to requiring movement of both
feet to control a single prosthetic arm. Despite the control
complexity and the need to “re-zero” the IMU sensors after
repositioning the body (e.g. standing to reclined sitting), users
have reported positive experiences with using foot controls for
prosthetic arm control [11].

We have developed a straightforward mapping between
arm and leg gestures based on the alignment of the degrees
of freedom of the ankle and the wrist. Additionally, we
established a set of muscles in each limb which have analogous
primary actions in order to facilitate comparison. First, we
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conducted an offline experiment in which subjects produced
gestures with each limb, and we determined that leg gestures
can be recognized accurately using techniques similar to those
commonly used in prosthesis control studies. Second, we
set up a simulated prosthetic arm control task—the target
achievement control (TAC) test [12]—in order to evaluate
real-time control capabilities of the system. Our goal was
to explore electromyographic gesture recognition from lower
leg muscles as an upper limb prosthesis control methodology.
Our results indicate that using the leg to control a simulated
prosthetic arm in up to four degrees of freedom works as
well as an analogous setup on the intact arm of able-bodied
subjects after just 20 minutes of classifier training and real-
time control familiarization. This idea has the potential to
offer prosthesis control performance to high-level amputees
currently not achievable in such a short time by any other
means.

II. BACKGROUND

A. EMG-Based Gesture Recognition

Over the last several decades, classification of gestures
based on electromyography recorded from residual muscles
of the arm has become the predominant prosthesis control
methodology. The approach is described generally in a review
by Scheme and Englehart [13]. Briefly, raw EMG recordings
from several muscle sites are split into short, often overlapping
segments (typically less than 300 ms), a feature vector is
extracted from each segment, and the feature vector is fed to a
supervised classification algorithm as either a training instance
of the gesture being performed or an unknown input requiring
prediction. A typical classifier training procedure involves
performing a set of gestures several times for several seconds
each, producing many training instances for the classifier
decision function to be created while requiring only a small
amount of total time from the user. Afterward, the trained
classifier can produce a gesture prediction when presented with
a novel feature vector. If the length of the recording segment
used to produce each feature vector is sufficiently small, this
approach can give the illusion of real-time continuous control,
where the user contracts the muscles as if to produce a gesture
with the missing limb in order to command the prosthesis
incrementally toward a desired posture. In addition to these
pseudo-continuous control techniques, there has recently been
a surge of interest in achieving simultaneous and continuous
control of multiple degrees of freedom through techniques
such as extracting muscle synergies [14] or regressing joint
kinematics against EMG features [15]. While these methods
could be useful for further evaluating the concept of con-
trolling an upper-limb prosthesis with the leg, we use more
thoroughly tested techniques for simpler system validation and
evaluation of the core principle of recognizing leg gestures via
surface EMG. Our gesture classification methods are overall
comparable to several TMR studies [4], [16].

The features used in the current study are mean abso-
lute value (MAV), waveform length (WL), number of zero
crossings (ZC), and number of slope sign changes (SSC)—
all simple time-domain features [17]. Despite their simplicity,

these features have been shown to represent the information
in raw EMG signals quite well. Many features have been
investigated in the context of EMG-based gesture recogni-
tion [18] and while some features can lead to higher clas-
sification accuracies (e.g. autoregressive coefficients, sample
entropy, fractal length), the more complicated features tend
to increase computational load and/or introduce parameters to
optimize. While computational complexity is becoming less
of an issue with increasingly powerful embedded processors,
the introduction of more parameters to adjust makes system
evaluation more complex, especially at such an early stage in
development.

Linear discriminant analysis (LDA) was used for super-
vised classification of the feature vectors. LDA is a classic
statistical classification technique that, like the time-domain
features described above, is simple but effective for EMG-
based gesture recognition, as shown by many studies using
the combination of LDA with time domain features [4], [19]–
[21]. The objective of LDA is to find a subspace in which
separation between classes is maximized. It has a closed-form
solution, even for the case of more than two classes [22], so
it is straightforward to implement and efficient to compute.

B. Mapping Between the Arm and Leg

Our control scheme is based on the natural alignment
of the degrees of freedom of the wrist and the ankle, as
shown in Fig. 1. Specifically: forearm pronation/supination
maps to foot eversion/inversion, wrist extension/flexion maps
to dorsiflexion/plantarflexion, and radial/ulnar deviation maps
to foot adduction/abduction. In addition to movements about
the wrist and ankle, there are analogous movements of the
fingers and toes. While hallux extension (corresponding to
thumb extension) can be performed independently of the lesser
toes and recognized with the methods used here [23], the
lesser toes are not readily controlled independently so they are
grouped together in flexion/extension (corresponding to open
hand/closed fist). In addition, independent hallux flexion may
be limited or impossible, so hallux extension in combination
with lesser toe flexion could potentially serve as an alternative
to the closed hand command, such as hook grip. For high-level
amputees, elbow flexion/extension is likely a more important
degree of freedom than radial/ulnar deviation. In this case,
foot adduction/abduction serves as a suitable analog without
significantly impacting the intuitiveness of the mapping, as it
is often aligned with elbow flexion/extension depending on the
angle of shoulder abduction.

In addition to establishing a set of analogous gestures, we
utilized a mapping between forearm and lower leg muscles. It
is common in EMG gesture recognition studies to arrange the
sensors in a ring around the forearm, as this arrangement is
suitable for the largest subset of patients with an amputation
distal to the elbow and it facilitates a simple and repeatable
electrode positioning procedure [13]. We found in preliminary
testing that with sensors placed circumferentially around the
lower leg (approximately one third the distance from the
medial condyle of the tibia to the medial malleolus), toe
movements were essentially unrecognizable. To solve this
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Fig. 1. Overview of the proposed control scheme. (a) The goal of this work is develop a noninvasive yet easy-to-use control scheme which could enable
individuals with transhumeral or more proximal amputations to control a powered prosthetic arm. (b) Control is based on a mapping between the degrees of
freedom of the ankle and the wrist. Arrows indicate the axes of rotation for each degree of freedom and colors indicate the mapping between upper and lower
limb degrees of freedom. Radial/ulnar deviation and foot adduction/abduction were used to represent elbow flexion/extension in this study. (c) The proposed
control scheme was evaluated in real time with a simulated prosthetic arm using the target achievement control (TAC) test.

TABLE I
MUSCLES USED FOR GESTURE RECOGNITION

Muscle Primary Action

Arm

A extensor carpi radialis longus wrist extension
B pronator teres forearm pronation
C flexor carpi radialis wrist flexion
D extensor pollicis longus thumb extension
E extensor digitorum finger extension
F flexor digitorum superficialis finger flexion

Leg

A tibialis anterior dorsiflexion
B peroneus longus foot eversion
C gastrocnemius lateralis plantarflexion
D extensor hallucis longus hallux extension
E extensor digitorum longus lesser toe extension
F flexor digitorum longus lesser toe flexion

problem, the muscles contributing to extension and flexion
of the toes were targeted. For a fair comparison between
the arm and leg configurations, we decided to target specific
muscle sites in both cases. Although fewer EMG gesture
recognition studies apply sensors to specific muscle sites, there
is at least some work to serve as a reference for our arm
gesture recognition results [4], [24]. The muscles used and
their primary actions are listed in Table I.

III. METHODS

We conducted two experiments to test the idea of using
EMG-based gesture recognition for upper limb prosthesis
control. First, nine able-bodied subjects (four male and five
female, 18 to 23 years old, eight right-hand and one left-hand
dominant) participated in an offline classification experiment

which was designed solely to determine how well current
standard techniques in upper limb gesture recognition apply
to the leg. Based on the results of this study, eight separate
able-bodied subjects (four male and four female, 18 to 21 years
old, all right-hand dominant) performed a target achievement
control (TAC) task [12] in order to evaluate these methods
for real-time control of a simulated prosthetic arm. In both
studies, participants performed the task seated with EMG
sensors on the leg in addition to a benchmark setup on the arm
for comparison—able-bodied subjects facilitated this within-
subjects design. All subjects were informed of and consented
to procedures approved by the Institutional Review Board at
UC Davis (protocol #251192).

A. Offline Classification Experiment

In the offline experiment, a custom data acquisition and
graphical user interface program was created to display a pho-
tograph of the prompted gesture being performed, a horizontal
sliding bar for prompting the user when to transition from
rest to the desired gesture final position and back to rest, and
an indicator of the progress through the current cycle. Six
pairs of disposable Ag/AgCl center snap electrodes (ConMed
1620) were placed with approximately 2.5 cm spacing over
the muscles listed in Table I. A reference electrode was
placed over the olecranon (arm configuration) or the medial
malleolus (leg configuration). The electrodes were connected
to Motion Labs Systems Y03 differential amplifiers (×300
gain, 100 dB CMRR, −3 dB bandwidth from 15 Hz to 2 kHz),
and the resulting EMG signals were sampled at 8 kHz by
a Measurement Computing USB-1608G data acquisition unit
(16-bit) and recorded directly to disk for offline analysis.
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All subjects produced the gestures shown in Fig 1 with the
dominant arm and the dominant leg while EMG signals from
the muscle sites listed in Table I were recorded. Each trial
lasted six seconds and subjects were prompted to perform the
pictured gesture for three seconds of the trial. Each gesture was
performed three times per cycle in randomized order. Eight
cycles made up the experimental session. First, sensors were
placed on the arm (arm configuration) and four consecutive
cycles of wrist/hand gestures were performed. Then sensors
were placed on the leg (leg configuration) and participants
completed four cycles of ankle/foot gestures

Before recording arm gestures, subjects viewed each of the
arm/hand gesture images they would be seeing throughout
the session and practiced each gesture several times. During
recording, subjects sat in a chair with the dominant hand
resting on a table. For the leg configuration, footwear was
removed to ensure consistent conditions (note that the foot
gestures can be performed with shoes on assuming the toe
box is not overly restrictive). Subjects then viewed the same
arm/hand gesture images, but here they were asked to produce
the lower limb movements they thought should naturally
correspond to the pictures of upper limb movements displayed.
Any confusion with respect to a given gesture mapping was
discussed with the researcher and verbally clarified (typically
little clarification was needed) and each gesture was practiced
several times. Subjects sat with their knees bent to a 90-degree
angle and their feet flat on the ground. They were instructed to
keep at least some part of the foot in contact with the ground
while performing the gestures.

The raw data was conditioned with a digital fourth-order
Butterworth bandpass filter with cutoff frequencies at 10 Hz
and 450 Hz, then downsampled to 2 kHz. The conditioned data
was then segmented into 150 ms windows with 50 ms overlap.
Segments between 1 and 1.5 seconds of each recording were
labeled as instances of the rest class (to avoid having trials
in which the user simply rests the entire time), and segments
between 2 and 4 seconds were labeled with the prompted ges-
ture class. Although the participants were prompted to hold the
gesture between 2 and 5 seconds, there was some variability
in the actual onset and offset timing for each trial. It was
found that participants often anticipated the prompts, and the
portion of the recordings between 2 and 4 seconds generally
captured the static portion of most recordings in addition to
some of the dynamic onset and offset segments. The four
time-domain features were calculated for each channel (mean
absolute value, waveform length, slope sign changes, and zero
crossings), and linear discriminant analysis (implemented by
scikit-learn [25]) was used to evaluate offline classification
accuracy.

The classification accuracies presented were obtained by
splitting the data into training and testing sets based on whole
cycles rather than trials or instances (individual recording
segments). This simulates how the classifier might perform
(on average) in a realistic setting in which the training always
occurs as a separate occasion from system use. For each
limb configuration, the four cycles of the given set were
split into all possible combinations of two cycles for training
and two cycles for testing. An LDA classifier was built for
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start

time
wrist extension

finish

60°
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Fig. 2. Progression of a 2-DOF TAC test trial depicted using serial screenshots
of the V-REP interface. A translucent, multi-colored “reference arm” was
shown to the subject to display the resting (target) posture. Each DOF involved
in the trial was initially displaced by 60 degrees and the task involved bringing
the arm back to the resting posture with ±10-degree tolerances in each joint.
Arm segments corresponding to joints outside the target were colored grey
and turned green when the joint reached the target.

each and their results were concatenated. The average clas-
sification accuracies presented reflect the number of correct
classifications divided by the total number of testing instances.
Three different gesture sets were analyzed: the “full” gesture
set including all eight gestures in Fig. 1 plus the rest class,
the full gesture set with radial/ulnar deviation or foot adduc-
tion/abduction removed (“no elbow”), and the full gesture set
with forearm pronation/supination or foot eversion/inversion
removed (“no forearm”). An ANOVA was carried out with
limb and gesture set as fixed factors and participant as a
random factor. Significance was set at α = 0.05.

B. Target Achievement Control Experiment

In the second study, eight subjects performed the target
achievement control (TAC) task [12] with analogous EMG
sensor configurations on the arm and the leg—six Delsys
Trigno wireless EMG sensors were placed in the same lo-
cations as in the offline experiment. Two additional subjects
participated in the experiment, but they seemed to have
trouble fully understanding the nature of velocity control and
were dismissed after struggling to complete any TAC test
trials. Overall, the signal processing and gesture classification
techniques were similar to those of the offline experiment.
The EMG signals were sampled at 2 kHz and a fourth-
order Butterworth bandpass filter with cutoff frequencies of
10 Hz and 500 Hz was used to condition the recordings.
Data was acquired in 216 ms windows with 108 ms overlap.
Time domain features and linear discriminant analysis were
used to classify the gestures. A decision-based velocity ramp
controller [16] was applied to the stream of LDA classification
decisions to help attenuate the effect of misclassification. The
joint velocities output by the controller were then directly
applied to a model of the Modular Prosthetic Limb (MPL) [26]
simulated in the V-REP [27] simulation environment, shown
in Fig. 2. The software written to implement the TAC test
experiment is available online [28].

Subjects produced classifier training data for the TAC test
trials similarly to the methods used in the offline experiment,
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and the instructions during this portion of the experiment were
the same. Four repetitions of each gesture were performed
in randomized order. Subjects were prompted to perform the
gesture at 2 seconds into the trial and hold the gesture for
three seconds. The section of each recording from 2.5 seconds
to 4.5 seconds was used as training data. In this experiment,
the rest class data came from separate trials rather than the
beginning portion of non-rest trials.

After the classifier was trained, the online portion of the
test began. An example TAC test trial is illustrated in Fig. 2.
During TAC test trials, a translucent “reference arm” was
shown just above the “controlled arm” to demonstrate the
neutral posture (joints at zero degrees). At the beginning of
a trial, the controlled arm disappeared while it moved into
the target posture, which consisted of either: a single joint
movement by 60◦ (1-DOF target), or a two-joint movement by
60◦ each (2-DOF target). The controlled arm then reappeared
in the offset posture, and an indicator changed color to prompt
the user to begin moving the controlled arm to back to the
neutral posture. Segments of the arm corresponding to the
controlled joints (elbow, forearm, wrist, and hand) changed
color depending on the state of the joint—if the joint moved
to a position within the tolerance of the target joint angle, the
arm segment changed from grey to green. Once the controlled
arm remained within the tolerance angle of the target for all
joints for a dwell period of 2 s, or if the target could not
be achieved within 20 s, the trial ended. The tolerance angle
was set to 10◦. Joint limits were set at ±80◦ with respect to
the neutral posture. The averages of the top 10 mean absolute
value features from the training data for each class were used
to calculate boost values [16] for the decision-based velocity
ramp controller such that the maximum output velocity for a
given joint would be 100◦/s, and joint velocities were explicitly
limited to this velocity.

The experiment consisted of two sessions, one for each
limb configuration, separated by at least 24 hours. Half of
the subjects started in the arm configuration and the other
half started in the leg configuration, but tests for differences
between these groups were not included in the statistical
analyses. After generating classifier training data (about five
minutes), subjects were given approximately 10 minutes of
guided practice controlling the simulated prosthetic arm in
order to become familiar with the nature of pattern recognition
control and the simulation environment. Subjects controlled
the arm with three and four active degrees of freedom. In the
3-DOF active condition, subjects controlled forearm prona-
tion/supination, wrist extension/flexion, and open hand/closed
fist (i.e. no elbow flexion/extension). In the 4-DOF active con-
dition, control was augmented with elbow flexion/extension.
Subjects practiced with two repetitions of every possible target
requiring only one motion class (1-DOF targets) with 3-DOF
active control. They then moved on to two repetitions of
every possible 1-DOF target with 4-DOF active. After practice,
subjects alternated between blocks of 3-DOF and 4-DOF
active conditions, where each block consisted of one repetition
of every possible 2-DOF target (includes all 1-DOF targets).
Subjects were told before each block whether or not control
of elbow flexion/extension would be enabled. In total, subjects
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Fig. 3. Classification accuracy for the nine subjects averaged across gesture
classes in the offline experiment. Three gesture sets were analyzed: full,
the full gesture set without elbow flexion/extension (no elbow), and the full
gesture set without forearm pronation/supination (no forearm).

completed 4 blocks with 3-DOF active (4×18 = 72 trials) and
3 blocks with 4-DOF active (3 × 32 = 96 trials). The exact
same procedure was carried out in the second session, but with
the other limb configuration. The “no forearm” condition from
the offline classification experiment was not used in the target
achievement control experiment.

Performance metrics for the TAC test include completion
rate, completion time, and path efficiency [12]. Completion
rate is the percentage of trials successfully completed before
the trial timeout. Completion time is the amount of time from
movement initiation to the moment the target is entered for the
last time on a successful trial. Path efficiency is the straight-
line Euclidean distance to the final arm position divided by the
cumulative distance travelled by the arm to get to the target,
measured in joint angle space. For each performance metric,
an ANOVA was performed with subject as a random factor
and target degrees of freedom (minimum number of movement
classes needed to reach a target—either 1 or 2), active degrees
of freedom (number of degrees of freedom controllable by the
subject—either 3 or 4), and limb configuration (either arm
or leg) as fixed factors. The significance threshold was set at
α = 0.05.

IV. RESULTS

A. Offline Experiment

Classification accuracies for each gesture set in the two
limb configurations (arm and leg) are shown in Fig. 3. An
ANOVA found significant effects of limb (p < 0.001) and
gesture set (p � 0.001), as well as a significant interaction
between the two (p = 0.003). Most notably, there was a
significant increase in classification accuracy in the leg con-
figuration when removing either the foot adduction/abduction
classes (“no elbow”) or the foot eversion/inversion classes (“no
forearm”) from the full gesture set. Differences between the
arm and leg configurations were significant across all gesture
sets, though the classification accuracy in the leg configuration
with the full gesture set was especially low.

While gesture set augmentation with additional gesture
classes generally results in reduced classification accuracy,
such a large difference was not found in the arm configuration.
This can be largely explained by Fig. 4, which shows the con-
fusion matrix averaged across subjects for the leg configuration
and the full gesture set. Four off-diagonal cells are annotated,
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Fig. 4. Confusion matrix showing the classification accuracy for each gesture
class in the full gesture set in the leg configuration. Abbreviations: NC (no
contraction), TF (toe flexion), FE (foot eversion), FI (foot inversion), TE (toe
extension), AD (foot adduction), AB (foot abduction), DF (dorsiflexion), PF
(plantarflexion).

corresponding to the misclassification of foot adduction as
foot inversion (and vice versa) as well as the misclassification
of foot abduction as foot eversion (and vice versa). This
failure to accurately discriminate adduction/inversion from
abduction/eversion was a primary consideration in the TAC
test experiment design.

B. TAC Test

1) TAC Test Performance Metrics: TAC test performance
in the arm and leg configurations are shown in Fig. 5. With
3 active degrees of freedom, subjects performed remarkably
similarly in the arm and leg configurations. Performance in the
leg configuration dropped, however, when elbow control was
enabled (4-DOF active). This is reflected in completion rate
but not completion time or path efficiency because the latter
two metrics are only computed for successful trials, and in the
trials that were successful, subjects tended to perform well
with the leg configuration. Furthermore, this difference can
be almost entirely explained by a single subject’s inconsistent
performance with 4-DOF active control in the leg configu-
ration. Unlike the other two subjects dismissed during the
session, this subject seemed to only have difficulty with the
leg configuration with elbow control enabled.

For completion rates, the number of active degrees of
freedom was a significant factor (p = 0.009) as well as the
number of target degrees of freedom (p� 0.001). There were
also significant interactions between limb and number of active
DOFs (p = 0.033) and number of active DOFs and number
of target DOFs (p = 0.008). Similarly, for completion time,
active DOFs was significant (p < 0.001) as well as target
DOFs (p � 0.001). Furthermore, the interactions between
limb and active DOFs (p = 0.001) and between limb and target
DOFs (p = 0.008) were significant. The three-way interaction
between limb, active DOFs, and target DOFs was also found
to be significant (p = 0.012). For path efficiency, active DOFs
(p < 0.001) and target DOFs (p � 0.001) were found
to be significant main effects and the interaction between
limb and active DOFs was also significant (p = 0.008).
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Fig. 5. Subject performance in the target achievement control task. Each
subject’s performance is shown with a translucent grey dot, and across-
subject means are indicated as squares. Completion time and path efficiency
correspond only to successful trials. Data from comparable studies are also
shown near the corresponding configurations: AB (inexperienced able-bodied
subjects with sensors on the arm [16]), TMR (experienced TMR subjects [16],
[29]), AMP (experienced amputees with sensors on the residual limb [12]).

Although not shown in Fig. 5, we tracked initiation time
(time from presentation of the target to first non-rest class
output), but found it to be essentially constant (∼ 1.2 s) across
all conditions except a slight systematic increase for 2-DOF
targets. This increase was likely due to subjects deciding which
of the two gestures should initiate the trial. No difference was
found between the arm and leg configurations.

2) Trial Completion Timing: As in previous TAC test
studies, we examined the number of trials completed at
incrementally increasing artificial cutoff times, known as the
cumulative completion rate (Fig. 6). Below the cumulative
completion rate curves, we also show a kernel density estimate
of the distribution of all completion times (for all subjects) in
order to show the time at which subjects tended to complete
the trials for the different conditions. For both the arm and
leg configurations and across 3-DOF active and 4-DOF active
cases, it is clear that 2-DOF targets tend to take longer to reach
than 1-DOF targets (as expected with serial control). In the 3-
DOF active case, the completion curves are nearly identical,
with a slightly faster initial rise in the leg configuration for
1-DOF targets. With four active degrees of freedom, subjects
tended to complete 1-DOF target trials roughly as quickly in
both the arm and leg configurations, though there was more
subject variability and an overall lower percentage of trials
completed. With 2-DOF targets, this difference was amplified,
and the curve for the leg configuration climbs steadily over
the entire 20-second trial duration without a sharp initial
increase. The density estimate shows a general grouping of
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Fig. 6. Cumulative completion rate: the percentage of trials completed across
the range of completion times. Kernel density estimates of completion rates are
plotted below to highlight the time at which most of the trials were completed
for each condition.

trial completion times around 6 seconds and another grouping
just before trial termination (20 seconds).

3) Improvement Over Time: In order to investigate whether
or not subjects improved performance over time, we analyzed
each of the TAC test metrics split into the blocks from the
experiment design (each block contains all possible 1-DOF
and 2-DOF targets in the given number of active degrees of
freedom). This is shown in Fig. 7. Although target DOF was
a significant factor in all three metrics, each block contained a
randomized ordering of 1-DOF and 2-DOF targets, and similar
changes over time were observed for both 1-DOF and 2-DOF
targets. From Fig. 7, there is a clear, albeit slight, increase in
completion rate in the leg configuration with 4-DOF active.
The large variance across subjects is caused primarily by the
single low-performing subject. A repeated measures t-test with
Bonferroni correction confirmed that the completion rate in
block 3 was significantly higher than in block 1 (p = 0.013),
though the differences between blocks 1 and 2 as well as
blocks 2 and 3 were not found to be significant.

4) Comparison to Other Studies: Our results with 3-DOF
active control toward 1-DOF targets are compared to the
results of similar studies in Fig. 5. Note with caution, however,
that every study using the TAC test uses slightly different
parameters, including trial cutoff time, target distance (with
respect to maximum joint angular velocity), and target size
(joint angle tolerance). Most notably, the comparable studies
used a 15-second cutoff time (compared to 20 seconds for our
study), but Fig. 6 shows that the final five seconds account for
only a small portion of the successful trials. Performance in
the arm configuration is well-matched to similar studies with
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Fig. 7. Subject performance in the target achievement control task across trial
blocks. Each point is the mean over subjects and target DOFs, and error bars
indicate standard deviation of the mean across subjects. Only completion rate
in the leg configuration with 4-DOF active showed a significant change over
the session (marked with *).

inexperienced able-bodied subjects [16], validating the end-to-
end operation of our experimental procedures, hardware, and
software. Interestingly, performance in the leg configuration
in this condition (3-DOF active, 1-DOF target) was overall
on par with the benchmark arm configuration and sometimes
slightly better. We attribute this to a challenge some subjects
faced in the arm configuration in commanding the arm to rest
without inadvertently pronating. This did not seem to heavily
impact performance, though path efficiency was somewhat
reduced compared to the leg configuration as well as the
other comparable studies. In contrast, movements with 3-
DOF active in the leg configuration were notably fast and
accurate. Compared to amputees using residual muscles of the
forearm [12] as well as a set of six TMR patients [16], our 3-
DOF control results are favorable. While we tested only able-
bodied subjects, we hypothesize that amputees with intact legs
will perform just as well as able-bodied subjects, however this
must be validated in a future study.

Control with 4-DOF active does not seem to be commonly
studied, so there is little to compare our results to in this
condition. One study involving two TMR patients [29] im-
plemented 4-DOF active control, and the patients achieved
substantially different completion rates (92.2% and 71.9%
with a velocity ramp controller). The average is indicated
in Fig. 5. While performance with 4-DOF active dropped in
the leg configuration, all but one of our subjects surpassed
85% completion rate, with two completing 100% of the 4-
DOF active/1-DOF target trials with the leg. Control in four
degrees of freedom with 2-DOF targets has, to our knowledge,
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not been tested elsewhere. Strong conclusions should not be
drawn from these comparisons, but they serve to validate
the system overall, especially in light of the fact that our
subjects started with no myoelectric control experience and
produced these results after less than one hour, including setup
(∼ 20 minutes), classifier training (∼ 5 minutes), and real-time
control familiarization (∼ 10 minutes). This is in contrast to
the time for recovery, rehabilitation, and training involved with
targeted reinnervation surgery.

While we cannot directly compare quantitative control per-
formance of the proposed system to the IMU-based controller
of Resnik et al. [11], we can address the functionality provided
by each. As demonstrated, the current EMG-based system can
provide fairly reliable control of three degrees of freedom, and
most subjects obtained good performance with four degrees of
freedom. In addition, hallux extension has been investigated
previously as a potential gesture for controlling a secondary
grip [23]. The IMU-based controller provides all of these
functions, and some instantiations add the ability to cycle
through six different grips (via mode switch) as well as
directly control the direction of hand movement via coordi-
nated actuation of the elbow and shoulder (endpoint control).
These additional features come at the cost of increased control
complexity, however, as they overload foot movements to
command different functions depending on the current control
mode, and typically a single arm is controlled using both feet.
It is worth noting that this kind of mode switch could be added
to the current EMG-based controller while remaining under
control via a single leg (as opposed to both feet). In addition,
we have demonstrated that EMG can be used to detect several
toe movements [23], which the IMU system cannot do.

V. DISCUSSION

The results of the offline classification study (Fig. 4) showed
that inclusion of foot inversion/eversion in addition to ad-
duction/abduction in the gesture set can be problematic, at
least with the current sensor configuration and signal pro-
cessing/classification techniques. We speculate that this was
caused by three factors. First, there is biomechanical coupling
between the movements misclassified for one another. For
example, foot adduction is a somewhat difficult gesture to
produce without also inverting the foot to some extent—the
more natural movement for the foot is supination, which is
a triaxial movement comprised of simultaneous adduction,
inversion, and plantarflexion. A similar argument can be made
for pronation. Users could potentially improve distinguisha-
bility of these two gesture pairs with practice, and Fig. 7
provides indirect evidence that this may occur within a single
session. Second, the sensor configuration used was not heavily
optimized and could potentially be improved, though the arm
configuration was also non-optimized. Finally, users received
no feedback during the offline experiment, so misclassifica-
tions occurred without subjects taking corrective action. Our
motivation for including 4-DOF active control in the TAC test
experiment was to determine if real-time visual feedback could
help subjects produce the gestures with fewer misclassifica-
tions. While performance using the leg control scheme indeed

dropped with elbow control enabled, this seems to be driven
primarily by a single subject performing especially poorly.
This may have been caused by an inability to adapt during
the familiarization period or anomalous sensor preparation.
The problems this poorly performing subject faced, however,
were also observed by the researchers during testing of other
subjects, albeit to a much lesser extent. Control of the elbow
seemed to involve one of two problems: it was either difficult
to avoid actuating the elbow unintentionally, or it was difficult
to avoid actuating other joints while controlling the elbow. The
two dismissed subjects understood the arm-leg mapping from
the beginning, but despite producing the correct movements,
they could not generate a reliable stream of classification
decisions. This seems to indicate that, while high classification
accuracy is not necessary for real time performance, especially
low classification performance can make the system difficult
to use. Future work should investigate alternative electrode
configurations and gesture training procedures to improve
performance in recognizing lower leg gestures via surface
EMG.

The slight improvement over the session in the leg config-
uration with 4-DOF active (Fig. 7) could be due to several
factors. First, subjects could be learning overt strategies for
completing trials in order to overcome poor classification
performance. Two specific strategies we identified during
testing were: avoiding problematic gestures when possible,
and waiting to correct for errant movements at the end of
a trial rather than stopping the primary movement to fix
issues before moving on. The latter strategy was especially
beneficial to completion rate for subjects that had difficulty
with unintentionally flexing the elbow. Second, subjects could
be learning to improve classification performance itself by pro-
ducing more distinguishable gestures. In future experiments,
a final post-training classification accuracy assessment could
be used to detect the presence or absence of this effect.
Finally, the subjects could be learning the mapping from the
leg to the arm. While we cannot definitively discount this
as a potential factor, the lack of change in completion time
and path efficiency seems consistent with strategy learning
as opposed to mapping learning. That is, subjects learned to
complete trials more often, but they could not do so more
quickly or more efficiently. If subjects were able to reliably
produce a stream of classification decisions but were confused
as to which gesture to produce, improvements in the latter
would lead to lower trial completion times with more direct
trajectories.

Our decision to employ the gesture classification methods
(LDA and time domain features) and real-time evaluation
task (TAC test) commonly used in targeted muscle reinner-
vation studies was primarily driven by the desire to maintain
comparability between our work and the only other high-
functionality myoelectric prosthesis control approach for high-
level amputees (i.e. excluding mode-switch control). Our re-
sults seem to indicate that these techniques are compatible
with leg muscles and movements, so it seems likely that
more recent advances in intent recognition from arm muscles
could also benefit this upper limb prosthesis control idea. For
example, a common problem in myoelectric control is the limb



1534-4320 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2018.2807360, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 9

position effect [30]. Weightbearing and changing leg position
(e.g. sitting, standing, lying down, etc.) could be regarded as
similar to the limb position effect, and techniques designed
to overcome this issue could potentially be applied to obtain
accurate recognition of leg gestures in different positions [31].
Furthermore, it could be beneficial to use automatic gesture
onset and offset detection methods to segment the recordings
used to train the classifier. This would produce a richer data set
by including segments of dynamic as well as static contraction
for each gesture class [32].

However, since the leg is different from the arm in many
ways—musculature, dexterity of control, types of muscle
fibers—future work should treat it as such in order to more
thoroughly evaluate its control output capacity. Recording
surface EMG from the leg is commonly used in a number of
clinical and research settings, such as motor coordination (gait
analysis), sport science, and neurological disease. In the con-
text of gait analysis, for example, the rich temporal information
in EMG signals may be used in combination with joint angle
measurements to detect abnormalities in muscle activations
during the gait cycle [33]. Leg EMG is also used in lower limb
prosthetics research, which has recently been taking advantage
of leg EMG as an additional sensor for improved control
over other active devices which work only with “kinesthetic”
and “proprioceptive” sensors [34]. There has also been some
recent work using supervised classification of leg movements
for volitional control of lower limb prostheses in non-weight-
bearing situations [35], [36]. Interestingly, Hargrove et al.
found that a small number of lower leg movements (plan-
tarflexion/dorsiflexion and external/internal tibial rotation) can
be recognized with EMG sensors placed only on upper leg
muscles in both able-bodied subjects and transfemoral am-
putees [36]. Optimization efforts specifically for control using
leg EMG could target the persistent problem of confusion
between inversion/adduction and eversion/abduction. It is also
worth noting that using surface EMG to record from the
extrinsic toe extensors and flexors has, to our knowledge,
not been done before. More experience is needed to ensure
reliable and clean recording from these muscles, especially in
developing methods for daily application by a non-expert (i.e.
the prosthesis user).

While the basis of this work is on the natural mapping
between upper and lower limb movements, there have been
several studies suggesting that, with training, performance
with a nonintuitive mapping from EMG to interface action
can approach that of a more intuitive mapping [37], [38].
These results are interesting, but it remains unclear if or
how they extend to control in more than two degrees of
freedom. It is likely that the training time required to match
performance with a nonintuitive mapping increases along with
increased control complexity. There seem to be no obvious
benefits to forcing the use of a nonintuitive mapping when
an intuitive one is available, though perhaps the mapping
discovery process promotes a deeper understanding of the
system and is beneficial to the user’s ability to adapt to
perturbations or nonstationarities. One of the goals of this
study was to minimize training time needed to begin functional
control of a prosthetic arm, and maintaining a mapping that

can be rapidly learned was the primary factor in working
toward this goal.

One potential avenue for expanding on this work is to
consider hybrid controllers utilizing multiple modalities, such
as combining EMG and inertial measurements. In these control
schemes, the benefits of each sensor modality can be used to
improve intent recognition and/or to control distinct aspects of
the robot’s motion [39]. While EMG is a somewhat noisy sen-
sor modality, the advantages of detecting toe movements and
not necessarily requiring recalibration following changes in
foot orientation or loading could make it a valuable component
of such a hybrid system. Furthermore, EMG recordings cap-
ture control signals “upstream” of end effector states that other
sensors like IMUs or foot switches measure, hence containing
potentially much richer information. For example, surface
EMG signals can be decomposed into motor unit action poten-
tials [40], giving access to neural commands which are difficult
or impossible to measure once the “musculoskeletal filter” [41]
has applied and the limb has interacted with the external world.
EMG signals from antagonistic pairs of muscles could also
be used to infer properties like joint stiffness, which is not
possible to measure via joint movement alone without applying
known external forces. Ultimately, however, measuring both
neural drive and kinematic parameters would enable better
stiffness estimation than either measurement alone. Signal
processing and machine learning techniques for myoelectric
control continue to progress toward detecting subtler and more
fluid user intentions, making EMG a promising sensor modal-
ity despite the ability to reliably measure limb movements or
forces directly using other sensors.

One of the benefits of targeted reinnervation is that, in
addition to efferent neural pathways for output of control
signals that map intuitively to prosthesis function, some sen-
sory feedback is restored as a result of the surgery. Indeed,
specific surgical techniques for enhancing the quality of this
restored somatosensory feedback have been developed [42].
This presents an exciting opportunity to provide dense anatom-
ically relevant feedback, which is a critical step toward
sensorimotor integration of prosthetic limbs [43]. With our
proposed control scheme and mapped feedback signals (e.g.
mapped tactile feedback to the toes corresponding to prosthetic
fingers), it would be interesting to investigate the potential for
cortical reorganization associated with limb substitution for
both feedback and control.

Although ambulation would interfere with the ability to use
the leg for upper limb prosthesis control, many activities of
daily living (ADLs) that require the use of both arms are
performed in a stationary position, such as eating at a table,
washing dishes, or folding laundry. Furthermore, the use of
both arms while walking often involves one or both arms being
held in a static posture, such as carrying a box. Transitioning
between standing and walking can be detected automatically,
and this could trigger the arm to lock in place. Regardless
of the solutions to these practical issues, there will always
be a trade-off between the merits of the control capabilities
achieved and the burden of the system’s intrusiveness. This
trade-off is not unique to our system, as all prosthesis control
interfaces have benefits and drawbacks. While many of the
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practical concerns associated with a foot-based controller have
been addressed by Resnik et al. for their controller based on
inertial measurement unit sensing of foot movements [11], we
are interested in addressing them for our system by developing
techniques specifically optimized for the application, testing
the system with amputees and conducting usability studies, and
eventually testing with physical robotic arms or prostheses.
There does not exist a single system that will work for
everyone, but our findings represent a first step toward adding
another option to the limited pool of techniques for high-level
upper limb amputees to control a powered prosthetic arm.
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